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VALIDITY OF DARCY'S LAW 
UNDER TRANSIENT CONDITIONS

By CHARLES E. MONO AN

ABSTRACT

Darcy's law, which describes fluid flow through porous materials, 
was developed for steady-flow conditions. The validity of applying this 
law to transient flows has been mathematically verified for most 
ground-water flow conditions. The verification was accomplished 
through application of Hankel transforms to linearized Navier-Stokes 
equations which described flow in a small-diameter cylindrical tube 
chosen to represent a single pore in a porous medum.

INTRODUCTION

When fluid flows are studied, the assumption is fre­ 
quently made that the flow is in the steady state. 
However, most flows in nature are in transient states. 
Flows in aquifers and oil-bearing strata are examples 
of such transient flows occurring in porous media. Flows 
in porous media are governed by Darcy's law under 
steady-state conditions. This same law is assumed to be 
valid with transient flows. The purpose of this report 
is to develop a transient-flow equation from fundamen­ 
tal physical laws and to compare the results from such 
an equation with the results obtained from an empirical 
Darcy's law. An equality of results will verify that Dar­ 
cy's law may be applied with assurance to most 
transient-flow conditions.

To treat the problem mathematically, certain idealiza­ 
tions are necessary. These will be discussed in detail in 
the following sections.

APPLICATION OF DARCY'S LAW

Darcy's law (1856) states that the volumetric discharge 
of fluid through a porous body is proportional to the 
saturated cross-sectional area perpendicular to the direc­ 
tion of flow and is inversely proportional to the length 
of the flow path. It also is proportional to the difference 
in hydraulic head between the input and output 
surfaces.

Darcy's law may be written (Hubbert, 1969, p. 31):

Q=-KA (1)

where

Description Dimensions

Q=volumetric flow rate
A= cross-sectional area of porous

medium perpendicular to
direction of flow 

K= hydraulic conductivity of
porous medium 

h=hydraulic head 
L= length of flow path

LT-1

L
L

Darcy's formulation (eq. 1) followed from his numerous 
experiments. Many subsequent experiments, both in the 
laboratory and in the field, have shown its validity for 
steady-state conditions. Because of the law's importance, 
both for the management of ground-water resources and 
for its relevance to petroleum production, vigorous ef­ 
forts have been made to give it a substantial theoretical 
basis (Gray and O'Neill, 1976).

Following these efforts, it is now customary to write 
the equation in a slightly different form; Hubbert (1969, 
p. 59) writes:

q=-a
dL

(2)

where, in addition to terms previously defined,

Description Dimensions

q= specific rate of fluid flow LT~l 
o=specific fluid conductivity LT1" 1 
<}»=fluid potential; $=gh L2 T~2 
g= acceleration (rate and direc­ 

tion) due to gravity LT~2

Scheidegger (1964) writes as follows:

q=  grad p-Qg » (3)
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where, in addition to the terms previously defined, 

Description Dimensions

H= dynamic viscosity of fluid
Q= density of fluid
k= intrinsic permeability of

porous medium (see Lohman,
1972) 

p= hydraulic pressure at a given
point

ML-3

L2 

ML-1 ?1-2

As Hubbert points out, the form of Darcy's law is 
similar to that of the other transport laws namely, 
Ohm's law, Fourier's law, and Picks' law, which pertain, 
respectively, to the flow of electrical current, the flow 
of heat, and the diffusion of chemical concentration. In 
all these cases, the laws apply to the steady state.

In the steady state, a flow field is characterized by the 
constancy of the velocity components at each given point 
in the field. In the unsteady state, the velocities at a 
given point change with time. A change with time im­ 
plies a change of momentum, which, of course, involves 
the density of the fluid.

The absence in the Darcy equation of any explicit 
variable for time and the absence of density in a 
dynamical context indicate that the Darcy equation is 
an approximation for the unsteady state. Although it 
has been clear for some time that the law is an approx­ 
imation, the real question continues to be: "How good 
an approximation is it?" The intent in this paper is to 
set the stage for further numerical estimates of the er­ 
ror made in using Darcy's law in its customary form 
with respect to current field applications.

The present problem is to obtain a better estimate of 
the error resulting from neglecting the inertial aspects 
of the transient-flow process. This paper seeks to furnish 
such an estimate on the basis of an analytical study of 
a simple flow-field element. From such an element, an 
approximation to a porous body may be constructed, at 
least conceptually.

A customary approach to a mathematical analysis 
such as that discussed in this report is to define a 
geometric model of the physical circumstances that are 
to be studied. Of course, it is necessary to examine the 
model in some detail to be sure that it properly reflects 
reality. The model should be simple enough so that it 
is amenable to direct mathematical description and 
calculation.

DESCRIPTION OF ANALYTICAL MODEL

There are certain properties that characterize porous 
bodies, one of which is the presence of continuous

passages through the material of the body that are 
capable of conducting fluid. The passages do not have 
constant cross-sectional areas they change both in area 
and direction. In addition, they may be characterized by 
a large surface area-to-volume ratio. The surface is the 
areal extent of the rock passage that is actually wetted 
by the liquid, and the volume is the volume of liquid con­ 
tained within that surface.

Over the years, various attempts to design 
mathematical models capable of describing in detail the 
flow of fluid through porous earth materials have been 
made. Brief mention will be made of some of these to 
give the tenor of the analytical developments up to the 
present.

Happel and Brenner (1965, p. 389) make reference to 
an earlier survey of the literature on the efforts to 
describe Darcy's law from fundamental principles. Their 
review can be highlighted by the following three sum­ 
mary paragraphs:
1. Slichter (1899) used an arrangement of spheres to 

idealize a porous earth material and assumed a 
triangular cross section for a flow passage. It was 
assumed that Poiseuille's law could be applied to 
describe fluid flow in the triangular section. 
However, this model was inadequate for general 
use because it was oversimplified.

2. Blake (1922) introduced the concept of a hydraulic 
radius, which he defined as the volume filled with 
the liquid divided by the wetted surface. He 
regarded a flow passage in a porous body as a tube 
having a very complicated cross section. Using the 
hydraulic radius so defined, Blake was able to 
achieve results that were quite useful. It should be 
noted that Blake's hydraulic radius is the inverse 
of the surface area-to-volume ratio that plays a con­ 
siderable role in catalytic chemistry particularly 
in chemical engineering.

3. Additional mathematical models were designed by 
Kozeny (1953), and a semiempirical model was 
made by Carman in 1956. The Kozeny-Carman 
work led to expressions for the constant in the 
Darcy equation which could be related to the void 
space and the hydraulic radius. Empirical 
developments of these constants are now commonly 
used in chemical engineering to analyze flow 
problems.

Happel and Brenner themselves made an analysis 
based on similitude and came up with constants for the 
flow equation that showed that the Darcy constant is 
dimensionally proportional to L squared divided by a 
constant C. This was a useful advance.

In a later study, Scheidegger (1964) made an analysis 
based on probability considerations. The pore structure
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was supposed to have a random distribution which could 
be given in probability terms. The motion of a fluid par­ 
ticle through such a flow field was assumed to be a ran­ 
dom walk. Scheidegger made some use of the Poiseuille 
concepts.

Scheidegger makes the comments that the earlier lines 
of analytical development were twofold: (1) 
mathematical models based on probability, and (2) 
models based on the geometrical stacking of flow- 
passage components.

Many ground-water investigators since 1965 have ex­ 
amined a wide variety of flow problems and have 
published the results of their theoretical derivations. 
Because none of the foregoing investigative studies per­ 
mit the Darcy constant to be calculated for an actual 
assemblage of porous earth particles, the fluid-flow 
analysis continues to rest on a somewhat empirical 
basis.

This paper combines some of the respective pro­ 
babilistic and geometric analytical features. As can be 
seen in figure 1, it is possible to simulate a porous body 
by assembling a bundle of capillary tubes. If the cross- 
sectional area of each tube is described by a Gaussian 
distribution, then we have achieved a random collection 
of the areas through which the liquid moves. A represen­ 
tative sample of such a collection can then be made in 
the three-dimensional form of a small elemental "pan­ 
cake" (fig. 1).

Elemental 
pancake and 
representative^ 
collection of ^ 
tubes

Individual 
capillary 
tubes

Random cross- 
sectional areas 
of tubes

Tubes oriented 
at random 
angles

Random spacing 
of elemental 
pancakes

FIGURE 1. Conceptual model of a porous body.

A second kind of pancake can be made by having the 
tubes of the same diameter but inclined or oriented in 
a random fashion, and a third arrangement can be made 
by having the separations between the pancakes reflect

a Gaussian distribution. These concepts presuppose com­ 
plete vertical continuity of flow from one pancake to 
another.

Thus, starting with a single tube, it is possible to build 
up a structure by a sequence of probability distributions 
that leads to the simulation of a porous body. The final 
description of the entire flow field, which can be 
calculated from the Gaussian distributions, hinges on 
and is determined by the behavior of the fluid moving 
through a single capillary tube.

In his discussion of mathematical models, Garding 
(1977, p. 6) remarks that physicists tend to validate their 
models by measurements in the real world; mathemati­ 
cians, on the other hand, use rules of logic.

With respect to physical measurements, W. O. Smith 
(oral commun., 1968) noted that he was satisfied with 
the laboratory measurements he made on capillary 
tubes using an apparatus substantially as shown in 
figure 2. Capillary tubes and undisturbed samples of 
porous bodies were the subjects of extensive laboratory 
experiments conducted by Smith. Unfortunately, his 
numerical data were not organized and published prior 
to his death and, therefore, only this author's 
mathematical analysis is described in this paper.

The analytical technique adopted by this author is one 
that features a study of the dynamic responses of fluid 
in a single capillary tube subjected to the specific stimuli 
of selected hydraulic pressure-gradient functions. Thus, 
a simple flow element is selected namely, a small slug 
or cylinder of water; it has already been shown that 
there are various ways of constructing the flow field for 
a porous body from such a simple element. The equa­ 
tions that are developed to describe the behavior of the 
simple flow element are then carried through for applica­ 
tion to the whole porous body.

The foregoing procedure has a certain resemblance to 
differential calculus, whereby complicated volumetric 
structures are obtained by integration from elemental 
volumes. The procedure also is similar to finite-element 
programming, in which the properties of the element are 
known and are combined into larger structures by rules 
that define the interconnections.

MATHEMATICAL ANALYSIS

Consider the experimental flow system consisting of 
a horizontal capillary tube (fig. 2). The advantage of this 
orientation is that the elevation component of the 
hydraulic head is removed from the calculations. The 
outlet end of the tube vents to the atmosphere so that 
a constant pressure (zero reference) prevails at least for 
the duration of a given experiment. The inlet end of the 
tube is in a closed water-supply tank or reservoir pro­ 
vided with an automatic control system that allows the
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internal pressure to be changed with respect to a time 
function as may be prescribed for the experiment.

3. instantaneous imposition of a ramp-function change 
(increase or decrease) in the pressure gradient.

Pressure sensor

Water-supply reservoir Open to 
atmosphere

Capillary tube

Pressure 
generator

Controller

Programer

Clock

FIGURE 2. Apparatus for producing selected hydraulic pressure-gradient functions.

The experimental setup, for which the mathematical 
analysis is developed, would consist of (1) initially 
establishing a suitable inlet pressure, (2) allowing the 
system to operate until steady-state equilibrium is 
achieved, and (3) imposing on the reservoir, at an ar­ 
bitrarily chosen reference time t=Q, any one of the 
following three pressure-gradient conditions or any com­ 
bination thereof:
1. instantaneous release of reservoir pressure to at­ 

mospheric pressure, which allows flow system to 
"decay" exponentially;

2. instantaneous imposition of a step-function change 
(increase or decrease) in the pressure gradient; and

To describe the operation of this experimental flow 
system mathematically, the Navier-Stokes equations are 
used; they are deemed valid because they are derived 
directly from Newton's basic laws.

It is well known that the Navier-Stokes equations are 
analytically intractable. It is necessary to make some 
adaptation to reduce them to a form that can be solved.

According to certain observations by Reynolds (1883), 
in the laminar-flow state, a particle of fluid in a tube 
moves in a straight line. This is a physical observation 
that can be expressed in mathematical terms. If this is 
done, the Navier-Stokes equation (Aris, 1962, p. 182) is 
simplified and can be written as
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dt Q dx dr
(4)

where, in addition to terms previously defined, 
Vx = fluid velocity, axial direction of tube, 
r = radial distance from tube axis or centerline,

cylindrical coordinates, 
t = elapsed time,

v = ^, kinematic viscosity of fluid,

x = distance along tube axis or centerline, and
p   hydraulic pressure.
Inspection of the simplified Navier-Stokes equation 

shows that it is of the parabolic type (Hadamard, 1952, 
p. 38). The boundary conditions require that there be 
a statement of the initial condition and two statements 
regarding the fluid velocity at two different points in 
space. The initial condition used is simply the statement 
that the velocity of a fluid particle is a function of its 
radial distance, r, from the tube axis. This has the 
mathematical form

(5)

where
B0 - preexisting steady pressure gradient at time t=Q 

and
a = radius of flow tube.
The velocity at the wall is zero at all times. This meets 

the requirement for one spatial statement:

Vx (a, 0=0. (6)

The other spatial statement comes from an examination 
of the conditions on the tube axis, which reveals that 
the velocity at r=0 is a singular point (see Powers, 1979, 
p. 21). However, for physical reasons, we know that the 
velocity is finite and we can therefore write

Vx (0, t) (7)

where C is some constant. The desired spatial statement, 
however, is distilled from this by noting that on the tube 
axis, the velocity gradient dVy/dr is zero at all times, 
and we can write

dVx 
dr

(0, t)=Q. (8)

The problem is now well presented.
The equation is similar to the equations describing the 

flow of heat and also diffusion. There are several 
methods available for solving the simplified Navier-

Stokes equation, including the transform method or the 
separation of variables; a numerical solution also may 
be developed. A solution for the case of a step-function 
drive and zero initial conditions was obtained by Holland 
and Brenner (1965) by the application of the separation 
of variables technique. There seems to be an advantage 
in using a transform technique in particular, a finite 
Hankel transformation. The conditions along the axis 
of symmetry of the tube and the no-slip condition at the 
wall are the same for many cases. For this analysis, a 
finite-transform technique was used; special use also was 
made of a Bessel function as a kernel. This technique 
has certain advantages when applied to this particular 
problem, because the initial and boundary conditions 
can be fitted very precisely to the Bessel functions.

The partial differential equation to be solved (see steps 
1-4 in "Appendix") is

(9)
dr3- rdr

jdVx uv x
dT [i

where 
T = t, a selected change in time scale (see step 3 in

"Appendix");
G! = a step-function pressure-gradient change; and 
Gr = a ramp-function pressure-gradient rate of change.

If we now operate on equation 9 and take the finite
Hankel transform, as expressed by Sneddon (1951) and
in table 1, we obtain

«
i+^rTrU dO)

TABLE I. Short table of finite Hankel transforms 

[Sneddon, 1951, p. 83, 531]

Real domain Transformed domain

a'-r2

d2 Vr 1 dV.X
dr2 r dr

aC K-.

-K?V

1C= constant.

where
V = fluid particle velocity in the transformed domain, 
KI= symbol denoting order of roots used in Hankel 

transform, and
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«/! =Bessel function, first order, first kind, 
The operation of "taking the transform" causes one 
variable to be "integrated out" (Sneddon, 1972, p. 10). 
Because r=0 and r=a are the limits of integration, the 
spatial boundary conditions are automatically entered. 
Equation 10 reflects the results of these operations.

Equation 10 is an ordinary differential equation, to 
be integrated with respect to the variable, T, and with 
initial conditions available to determine the constant of 
integration. Recall that the initial conditions are a 
parabolic velocity distribution which is transformed by 
applying the results in table 1 to equation 5.

Integration equation 10 with respect to T gives

-bT (11)

where

b=K2i and
L

The initial conditions have been incorporated through 
evaluation of the constant of integration. This equation, 
in the transformed domain, shows the time evolution of 
the velocity for all cylindrical tubes. This has the ad­ 
vantage, therefore, of removing the space variable and 
describing the transient situation with respect to the one 
variable of time. This equation form can reveal the time 
evolution of the flow-velocity profile.

The inverse finite Hankel transformation (Sneddon, 
1951, p. 83) can now be performed on equation 11 to yield 
the following desired solution in the real domain:

(12)

where, in addition to terms previously defined, 
z = r/a, radial distance as a fraction of tube radius;

o -TCj=-   -2 time constant, ith term;

«/o =Bessel function, zero order, first kind; and 
aj =ith root, Bessel function; zero order, «70 (aj)=0.

INTERPRETATION OF TRANSIENT-FLOW 
EQUATION

Equation 12 has a structure that may be interpreted 
from mathematical and physical points of view. The 
most logical approach seems to warrant looking first at 
some of the mathematical features. As opportunities 
arise, however, physical interpretations are interwoven.

The dependent variable, V& is by definition the fluid 
velocity in a direction parallel to the axis of the tube 
at any given point a radial distance, r, from that axis. 
Vx is also a function of time, and thus its complete range 
of definition extends from r=0 to r=a in the space do­ 
main and from t=Q to t=°° in the time domain.

In examining equation 12, the velocity, Vx, is seen to 
comprise the sum of three bracketed terms which, in the 
order given, describe (1) a component related solely to 
the preexisting (prior to t=0) steady pressure gradient, 
B0, and to the exponential decay of the flow system after 
that gradient is dropped to zero; (2) a component related 
solely to the imposition of a pressure-gradient step func­ 
tion, GI, and (3) a component related solely to the im­ 
position of a pressure-gradient ramp function, Gr. This 
suggests a very desirable versatility when it comes to 
analyzing practical problems in the field. Almost any 
conceivable pressure-gradient pattern should be 
amenable to analysis by subdividing it into the best 
possible arrangement of equivalent pieces that represent 
B0 , G1? and Gr pressure-gradient terms. Through the 
principle of superposition, a valid analysis can be made. 
Furthermore, this versatility of equation 12 is not con­ 
tingent on the initial conditions being zero.

It is of interest to note that a "snapshot" of the point- 
velocity profile across the tube radius during a transient 
condition is not a parabola. Nor is a series of such snap­ 
shots the case of a small parabola growing exponentially 
into a large parabola. Instead, there is throughout the 
evolutionary process a slight warpage away from the 
parabolic form. Although this deviation may be small, 
there is the view expressed by Birkhoff (1960) that, in 
hydrodynamics, there are paradoxes whereby (1) sym­ 
metrical causes do not always produce symmetrical ef­ 
fects and (2) small causes sometimes produce large 
effects. Thus, it seems appropriate to carry the fine struc­ 
ture of the point-velocity analysis to the useful limits 
afforded by equation 12 before combining the results 
with any further mathematical operations.

Equation 12 should first be tested to illustrate that 
the initial (at t=0) and boundary conditions have indeed 
been satisfied. If t=Q, each exponential term equals
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unity and, therefore, a simple inspection of equation 12 
shows that the third bracketed term is zero. There now 
remains, in each of the first and second bracketed terms, 
a series summation, the limiting value of which (when 
£=0) was given by Bowman (1958, p. 17) as (I-s?)/4. This 
shows that for £=0, the second bracketed term also is 
zero and, therefore, equation 12 reduces to the simple 
form

(13)Vx (r, 0=-B0-    
M 4

By inspection, equation 13 satisfies the two stated 
spatial boundary conditions if it is noted that the expres­ 
sion dVy/dr is zero when 2=0 (flow-tube center) and that 
the velocity, Vx, is zero when 2=1 (flow-tube wall).

An assessment of the individual significance of the 
three bracketed terms (and their coefficients) in equa­ 
tion 12 is now presented.

SIGNIFICANCE OF 
FIRST BRACKETED TERM

Expansion of the indicated series summation may be 
written as

i t
aJ,(ai)

As the index i increases by unit steps, the successive 
roots a i become larger when evaluating the series sum­ 
mation for a given time, t. (See values given on fig. 3.) 
In other words, successive exponential terms become 
smaller, and if the time factor is now allowed to increase 
the combined effect is that "spectral terms" of higher 
order decrease faster than those of lower order. Thus, 
the "fine structure" in the velocity profile disappears 
early, leaving the first term in the series summation (eq. 
14) as the principal descriptor of the transient-flow 
condition.

An important aspect in the analysis of transient flow 
is the action of the inertial terms as exhibited by the 
time constants. The numerical value of the time cons­ 
tant for a simple tube representing a pore can be 
calculated. The value of the time constants changes enor­ 
mously with the radius of the tube. The transient 
process that is, the evolution of the velocity pattern- 
can be visualized as starting at the tube wall and pro­ 
ceeding inward to the axis. This mode of analysis pro­ 
vides additional insight into the transient process.

A partial insight into the relative significance of the 
first three terms in the series summation of equation 
14 is gained from the data plotted as figure 3, although 
they were developed primarily to show how the time con­ 
stant, Tc^, increases with an increase in flow-tube 
radius. By definition, the parameter Tc^ is a function 
of Q, n, a, and aj in the manner repeated in figure 3. A 
dimensional analysis of Tc^ shows that it does indeed 
have the dimensions of time, and numerical values can 
be computed for any fluid if Q and ju have been deter­ 
mined. To prepare figure 3, values of e and ju were taken 
for distilled water at 68 °F (20 °C) and values of the time 
constant, Tc^ and then computed for selected tube 
radii first for the Bessel function root at from the first 
term of equation 14, next for the root a2 from the second 
term of equation 14, and finally for the root a3 from the 
third term of equation 14. The three curves plotted in 
figure 3 graphically illustrate the dominant importance 
of the first term in equation 14 an importance that is 
considerably strengthened by noting that the Bessel 
roots, aj, appear to the cubed power in the term 
denominators in that series-summation equation. Thus, 
the value of af is only about 14 in the first term 
denominator, whereas, it has grown to about 648, or 
nearly fifty fold, in the third term.

The physical significance of just the first bracketed 
term (and its coefficient) in equation 12 can be 
demonstrated by neglecting, for the moment, the second 
and third bracketed terms by assuming that both Gx and 
Gr are equal to zero. By definition, B0 is the preexisting 
steady-pressure gradient maintained on the flow system 
up to time £=0. In the experimental setup shown in 
figure 2, this presumes that steady pressure (and the 
necessary amount of fluid) ha& been maintained in the 
water-supply reservoir, which has a very large volume 
relative to the tube, at some convenient value above at­ 
mospheric pressure, for a long enough period so that the 
rate of flow through the capillary tube has stabilized and 
reached an unvarying or steady state. At time £=0, the 
pressure in the reservoir is instantaneously lowered to 
atmospheric. Nothing more is done no energy is exter­ 
nally added to or subtracted from the flow system, and 
the system is simply allowed to "run down." This is a 
classic exponential decay situation, and the exponential 
term in the first bracketed term of equation 12 precise­ 
ly describes the manner in which the velocity, Vx, 
"bleeds off." As t-+-<*>, the value of the exponential term 
(and hence V^h^O. Prior to £=0, the fluid flowed through 
the tube at a steady rate, and a certain level of kinetic 
energy obviously was being maintained. With removal 
of the constant pressure gradient at £=0, the dissipative 
processes set in and the kinetic energy, acting through 
the viscous forces, converted to heat, which decreased 
fluid velocity.
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FIGURE 3. Relation between time constant and radius of flow tube.
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SIGNIFICANCE OF 
SECOND BRACKETED TERM

To examine the significance of this term, neglect the 
first and third bracketed terms of equation 12 by assum­ 
ing that B0 and Gr are equal to zero. Physically, this 
means that, prior to time £=0, the flow system for the 
experimental setup of figure 2 is quiescent at at­ 
mospheric pressure that is, there is no pressure gra­ 
dient on or flow through the capillary tube. At time £=0, 
a step-function pressure gradient, G1? is applied to the 
tube by instantaneously raising the pressure in the 
water-supply reservoir to some convenient value above 
atmospheric pressure and by holding that imposed 
pressure constant thereafter. Holding the pressure con­ 
stant means that energy (and fluid) must be fed con­ 
tinuously into the flow system. The supplied energy is 
accounted for in two ways: (1) energy that must over­ 
come inertia and accelerate the fluid is stored as momen­ 
tum, and (2) the remaining energy that must overcome 
the viscous forces in the fluid is dissipated as heat. If 
the rate of energy dissipation has increased to a value 
that equals the constant rate at which energy is being 
fed into the flow system, no further acceleration of the 
fluid can occur and the system has reached a steady 
state.

The second bracketed term of equation 12 contains the 
identical series summation that has already been shown, 
in its expanded form, as equation 14. Discussion of that 
equation showed that, as time elapses, the value of the 
summation decreases and very quickly approaches zero. 
As this happens, the only term left in the brackets is 
(l-2?)/4, which contains no time factor. Thus there is 
no further change with time that is, the steady, or un­ 
varying, state has been reached.

SIGNIFICANCE OF 
THIRD BRACKETED TERM

To examine the unique significance of this term, 
neglect the first and second bracketed terms of equation 
12 by assuming that B0 and Gx are equal to zero. As in 
the preceding discussion, this means that, prior to time 
£=0, the flow system or the experimental setup of figure 
2 is quiescent at atmospheric pressure. At time £=0, a 
ramp-function pressure gradient, Gr, is applied to the 
tube by raising the pressure in the water-supply reser­ 
voir at a steady rate. The nature of the flow system 
response can be addressed by noting that the series sum­ 
mation is now a bit different from that exhibited in both 
the first and second bracketed terms of equation 12. 
Although the expansion of the series summation has the 
same form as that shown as equation 14, the multiplier 
of each expanded term is Tc^(l-e~ ci). As time in­ 
creases, this term in the series quickly approaches zero

and, thus, the summation expansion reverts to the 
simpler form:

2 T
2 Tc J0

+
a\

|

2 7k J0 (a32)

2 Ten J0 (anz)

(15)

The root characteristics of the Bessel function J0 and J: 
resemble a cosine function and a sine function, respec­ 
tively. Their combined effect, as successive terms in the 
series summation (equation 15) are evaluated, is to ap­ 
proach a finite limit. This occurs after only the first two 
or three terms are used; however, each still needs to be 
multiplied by the appropriate time-constant parameter, 
Tc^ Furthermore, a time parameter, t, also is the 
multiplier for the first term appearing in the third 
bracketed term of equation 12.

One way of visualizing what is described by the third 
bracketed term of equation 12 as time elapses is to say 
that the response, Vx, although trying to catch up with 
the stimulus, Gr, succeeds only in approaching a finite 
lag for any given radial distance, r, from the flow-tube 
axis. This finite lag is different for each radial distance. 
Thus, the velocity profile "warps" with the time. 
Because the flow system has inertia, the response can 
never completely catch up with the stimulus, which is 
increasing continuously at a steady or linear rate.

Interpretation of the transient-flow equation is not 
complete without elaborating on the nature of the time 
constant, Tc^ This is a key parameter in characteriz­ 
ing the transient-flow process.

The time constant, as calculated from its definition in 
equation 12, reflects the nature of the assumptions made 
in devising a single capillary-tube model. Thus, it would 
not be expected to yield numerical values that necessar­ 
ily agreed with similar constants determined from other 
investigators' works, inasmuch as the latter are based 
on different sets of modeling assumptions.

The time constant may be regarded as the time inter­ 
val that extends from the moment a linear time in­ 
variant system is perturbed by, say, a step function un­ 
til the system has reached 63 percent of the new steady- 
state condition. A time invariant system is one whose 
properties, such as dimensions, viscosity, density, and 
temperature, are constants. A linear system is one to 
which the mathematical principle of superposition ap­ 
plies. Time constants appear in the exponential terms 
in the transient-flow equation; their significance may
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be illustrated by three distinct fluid-flow situations:
1. time constant is very short compared with the dura­ 

tion of the flow process,
2. time constant is of the same order as the duration 

of the process, and
3. time constant is long compared with the process 

duration.

In the first case, which is common in geology, the tran­ 
sient flow effects can be neglected; in the second case, 
those flow effects should be estimated in order to make

a good approximation; and in the third case, transient 
flow effects must be taken into account to provide a 
realistic view of the whole flow process.

COMPARISON WITH DARCY'S FLOW EQUATION

A method of comparing the analytical results obtained 
from the Darcy (steady-state) and transient-flow equa­ 
tions is computing the volume rate of discharge for a 
given flow condition with each of the two equations (fig. 
4). Consider a representative sample of a porous body

SE
A. Imposed pressure-gradient step

B. Discharge computed from Darcy's Law through 
a representative porous sample

(D 
cc.

o
CO C. Discharge computed from transient-flow 

equation through one capillary tube

Q

D. Superposed discharge curves for Darcy and 
and transient flows

2 3 

MULTIPLES OF TIME-CONSTANT UNIT,
1

FIGURE 4. Comparison between Darcy and transient-flow equations for indicated step increase in pressure gradient.
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initially quiescent and then subjected to a step-function 
pressure gradient, Glf (fig. 4A). From Darcy's law, an 
expression for the volume rate of discharge, Qd, can be 
written directly from equation 1 in the form

(16)
where

Equation 16 contains no time factor and obviously 
describes an unvarying or steady-state discharge con­ 
dition (fig. 4B).

Now consider a capillary tube of radius a, in a quies­ 
cent state, and then apply the same step-function 
pressure gradient (Gx). No other change is imposed, and 
the response is uniquely described by simply the second 
bracketed term (and its coefficient) of equation 12, which 
defines, as a function of time, a velocity profile at right 
angles to the tube axis. This term can be integrated as 
a function of radial distance from the tube centerline, 
between the limits r=0 and r=a. This yields the follow­ 
ing expression for the volume rate of discharge, Qt, as 
a function of time:

no*G1
-t/T

£ (17)

Because the series summation in the referenced term 
of equation 12 converges rapidly, only the first term of 
the expansion needed to be integrated. Also, because of 
a-!4 equals 33.2, the coefficient of the exponential term 
in equation 17 can be replaced with the value 1. Equa­ 
tion 17 may, therefore, be rewritten in the form

Qt = l-e (18)

Equation 18 may, therefore, be regarded as a 
mathematical model for the transient-flow state show­ 
ing the discharge response from a capillary tube sub­ 
jected to a step-function pressure gradient.

If the value of t becomes sufficiently large compared 
with TCi , the exponential term in the brackets (equa­ 
tion 18) becomes negligible. Indeed, if t=5TCi, the value 
of the exponential term is less than 0.02. Thus, for any 
larger values of t, the bracketed part of equation 18 may 
be considered equal to unity, and, thus, Qt has reached 
an unvarying or steady state. The foregoing observations 
are readily apparent in figure 4C, which is a plot of equa­ 
tion 18.

To compare the difference between the two preceding 
methods for computing rate of discharge under the 
stipulated flow conditions, the discharge curve shown

in figure 4C is superposed on the curve shown in figure 
4B. Note, however, that the curve in figure 4C 
represents the rate of discharge through just one 
capillary tube. Because this single tube is representative 
of all tubes, it is permissible to multiply the rate of 
discharge in the one by some number, n (number of 
tubes), such that the combined or total rate of discharge 
exactly equals the steady rate of discharge (graphed in 
fig. 4B) for the representative sample of the porous body 
when steady state is reached.

The superposed results are as shown in figure 4Z>; the 
hachured area indicates the difference between the two 
forms of analysts during the transient or unsteady part 
of the flow period. Observe that the two curves are in­ 
deed coincident when the elapsed time, t, has increased 
to 5TC . Thereafter, the two forms of analysis yield iden­ 
tical results because steady-state conditions prevail in 
the flow system.

For an aquifer of medium gravel, in which the average 
pore-space radius might be 1 mm, the corresponding 
value of Tc , as read from figure 3, is about 0.5 second. 
This suggests that, in response to some step-function 
change imposed on the aquifer, the duration of the tran­ 
sient flow period would be about 2.5 seconds.

The validity of the preceding discussion, which com­ 
pares the results obtained from the Darcy equation 
rather than the transient-flow equation, is restricted in 
no way by the arbitrary choice of a step-function 
pressure gradient as the stimulus to the flow system. 
The choice was primarily for purposes of illustration.

SUMMARY AND CONCLUSIONS

The mathematical analysis in this paper is based on 
equation 4. If we multiply each term in that equation 
by the fluid density, Q, the left-hand side represents a 
change in the momentum or a force. The first term on 
the right-hand side represents the causative force pro­ 
vided by the pressure gradient. The last term on the 
right-hand side can then be regarded as the dissipative 
or opposing force due to viscosity in effect, a frictional 
force. Hence, this version of equation 4 is a "balance of 
forces" equation.

Consider each term of the foregoing version multiplied 
by a velocity, Vx. The left-hand side of the resulting 
equation may be interpreted to mean the change in 
kinetic energy. The first term on the right-hand side 
represents energy input per unit time to maintain the 
pressure gradient. The second term on the right-hand 
side gives the rate at which frictional energy is 
dissipated as heat. We now have a representation of the 
fluid-flow process in terms of energy. In the steady state, 
the kinetic-energy term is constant that is, energy is 
being introduced into the system at a rate just sufficient
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to compensate for the frictional losses. The advantage 
in considering the fluid-flow process from this point of 
view a balance in the rates of energy flow is that it 
gives a further insight into the transient as well as the 
steady-state flow conditions.

In a fluid-flow system, the essence of a transient proc­ 
ess is its time evolution. Therefore, the time variable 
is normally the dominant parameter in any mathema­ 
tical description of that system. In this report, the 
measure of time that characterizes the continuously 
changing fluid-flow process is identified as the time con­ 
stant, and it first appears in equation 12. If the descrip­ 
tion of the transient process is given in terms of the time 
constant, the time evolution is independent of real time. 
Therefore, it is a simple matter to use equation 12 to 
analyze specific flow-field problems.

A closer look at the structure of the time constant is 
appropriate. The time constant obviously includes two 
kinds of information; the first relates to the properties 
of the fluid (/^ and Q), and the second relates to the 
geometry of the flow tube (radius r, and Bessel root, aj, 
which implies cylindrical shape). The dynamic viscos­ 
ity, n, of the fluid is associated with the dissipative ac­ 
tion in the flow system, and the fluid density, Q, is 
associated with the storage of kinetic energy. Thus, for 
any given flow system, the time constant must reflect 
the ratio between the storage of kinetic energy and the 
dissipative action, inasmuch as it includes the ratio of 
Q to p.

On the basis of mathematical analysis in this paper, 
equation 12 is shown to be a convenient tool for examin­ 
ing specific ground-water situations, regardless of 
whether they are simulated in the laboratory or en­ 
countered in the field. Equation 12 includes pressure- 
gradient terms that are measures of energy input. In 
the laboratory, such inputs can be precisely controlled 
as to amplitude and time of application. Then, the 
response is predictable and reflects the design of the ap­ 
paratus. Similar controlled inputs can be made in the 
field environment. Thus, an aquifer-recharge experi­ 
ment of a selected magnitude can be started at any given 
moment and with any convenient well. The response will 
be predictable and will reflect the known physical pro­ 
perties and dimensions of the porous-earth material com­ 
prising the aquifier. Depending on the nature of the 
experiment laboratory or field the numerical value of 
the time constant can be determined (core sample 
analysis) and a judgment made as to the merits of us­ 
ing the transient-flow analysis.

The time constant increases as the square of the radius 
of the capillary flow-tube, which in turn is intended to 
represent a flow path through some porous earth 
material. If a tube radius of 3 mm, for example, is 
selected (that radius would be exceeded in the field only

by the pore radius of very coarse gravels or cavernous 
limestone), the time constant would be about 1.7 seconds 
(fig. 3). Thus, if a step-function type of pressure gradient 
were applied to this size of flow tube, the steady-state 
condition would be reached in about 8.5 seconds. This 
helps to place a practical upper limit on the value of the 
time constant. In other words, if a detailed description 
of the rate of discharge is needed within the first 8 
seconds of the foregoing flow conditions, equation 12 
should be used.

If a linear type of pressure-gradient change had been 
postulated as the basis for analysis instead of a step func­ 
tion, similar arguments could have been made with only 
some differences in detail, the principal difference be­ 
ing the development of a standing time lag in the 
response when compared with results obtained by ap­ 
plying Darcy's law. The time lag would be of the order 
of two time constants; again, equation 12 would permit 
the calculation for any specific set of conditions.

It may be concluded that, for most of the commonly 
encountered ground-water flow systems, the simple 
Darcy equation remains an adequate mathematical 
description. The interesting point is that any reasonable 
set of flow-field circumstances can now be evaluated 
rapidly and the most appropriate analytical procedure 
followed. Of course, experimental verification would be 
highly desirable.

One final observation seems pertinent to the direction 
that might be taken for any further research. In the 
mathematical analysis given herein, the velocity pro­ 
file was described by Fourier series. This is a powerful 
analytical technique, and its application to further 
studies of the "structure" of fluid flows would enhance 
our knowledge and understanding of the intricacies of 
unsteady fluid flow processes.

The analysis presented in this report suggests direc­ 
tions for future research. One direction would be to ex­ 
amine the behavior of fluid flow through assemblages 
of tubes and connections organized from simple elements 
by probability rules. Another direction would be to 
measure, in the laboratory, the transient response of 
fluid flow through a core sample of porous earth 
material.
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APPENDIX: SUPPLEMENTAL DERIVATION 
OF EQUATIONS

The following numbered steps show the manner in 
which the transient-flow equation was derived, starting 
from the modified Navier-Stokes equation.

1. Navier-Stokes equation simplified:

dVx== _l 3p+ v\d 2 Vx ,13^3 
3* e 3* L ar2 r dr

2. Introduction of the time-dependent gradient, G^ Grt, 
a simple polynomial forcing function that reflects 
a physically attainable state:

3. Insert change of time scale:

T = vt and dT = vdt.

4. Equation to be solved:

5. Boundary conditions:

a. no slip at the flow-tube wall:

Vx (a, t] = 0 

b. finite velocity on the flow-tube axis:

Vx [0, t] < C 

c. symmetry:

-^[0, t] = 0

d. initial conditions:

6. Equation transformed by finite Hankel transform:

7. Integration of the transformed equation:

The primitive is:

\
w

= \--G1 C1eKZiTdT
r*

C0

vVe

^cl^-JJ/F+c
.... 1\ 1^2 IT'4 /e ' ^0

8. Evaluate the constant of integration, using the 
transformed initial conditions.

atT=0, V = --J, 
M K i

c° = 7T K*- JI (aKd + j

9. Solution in the transformed domain:

+ bv

10. Perform the inverse transformation. Use table of 
transform pairs and also definition of inverse 
transformation.

- ~ T , 
i aJ0(ar)

Tc - fth term Tc{ =



SYMBOLS AND ABBREVIATIONS 15

LIST OF SYMBOLS AND ABBREVIATIONS

Symbol Dimensions Description

A L2 Cross-sectional area of porous medium perpendicular to
direction of flow.

B0 ML~2 T~2 Preexisting steady pressure gradient at time t=Q.

C0 T~ l Constant of integration.

r T a u i * <fcWff> C t L Symbol for   ̂     

D ML-'T*

G! ML~2 T~2 A step-function pressure-gradient change.

Gr MLr*T~3 A ramp-function pressure-gradient rate of change.

e/0          Bessel function, zero order, first kind.

e/i          Bessel function, first order, first kind.

K LT~* Hydraulic conductivity of porous medium.

Ki ................ Symbol denoting roots used in the Hankel transform;
J0(aKi)=Q.

L L Length of flow path. 

Q L3 ?1-1 Volumetric rate of flow.

Qd L3 ?1-1 Volumetric rate of flow calculated according to Darcy's
law.

Q t L3 T~l Volumetric rate of flow calculated according to equation
12.

T U Changed time scale; T=vt.
DO2

Tc . L2 Time constant, ith term; T= -
M°i

Vx LT~l Fluid velocity in axial direction of tube.

V T~l Fluid particle velocity in transformed domain.

a L Radius of flow tube.

b .......... .... .. Symbol for K*.

c ................ Constant.

g LT~Z Acceleration due to gravity.

h L Hydraulic head.

i ................ Index in integers.

k L2 Intrinsic permeability of porous medium.

p ML~1 T~2 Hydraulic pressure at a given point.

q LT~l Specific rate of fluid flow.
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Symbol Dimensions Description

r L Radial distance from tube axis.

t T Elapsed time.

x L Distance along tube axis or centerline.

z ................ Radial distance as a fraction of tube radius; z=r/a.

M ML~1 T~1 Dynamic viscosity of fluid.

v UT~^ Kinematic viscosity of fluid.

6 ML~3 Density of fluid.

a T Specific conductivity of fluid.

<f> L2 T~2 Fluid potential; $=gh.


